Name:			
maine.			

Assignment: SPRING 2020 MAT115 Assignment 2

Point A (3, -2) and point B (-1, 6) are endpoints of \overline{AB} . Point C is the midpoint of \overline{AB} . What is the equation of a line perpendicular to \overline{AB} that passes through point C?

$$1 y = \frac{1}{2}x + \frac{3}{2}$$
$$2 y = -\frac{1}{2}x + \frac{5}{2}$$

$$y = -2x + 4$$

$$4 y = 2x$$

2 The table below could be used to graph which equation?

x	у
0	2
1	1
-1	3
2	0

1
$$y = -x + 2$$

2 $y = x + 2$
3 $y = -x - 2$
4 $y = x - 2$

Class/Period:	
Ciass/Period.	

Teacher: Villegas

3 Given f(x) = 2|3x - 4| - 24

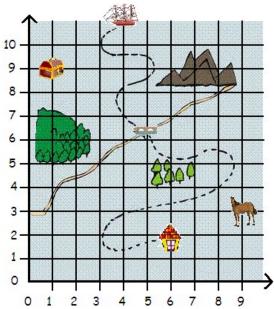
Part A: Evaluate f(0) =

Part B: Solve f(x) = 0

 $\begin{array}{c}
 1 \\
 \frac{16}{3} \\
 2 \\
 -\frac{16}{3} \\
 3 \\
 \frac{16}{3} \text{ and } -\frac{8}{3} \\
 4 \\
 \frac{8}{3} \text{ and } -\frac{16}{3}
 \end{array}$

The correct answer to part B is choice

4 Which chart could represent the function f(x) = -2x + 6?


	х	f(x)
	0	6
1	2	10
	4	14
	6	18

	Х	f(x)
	0	8
3	2	10
	4	12
	6	14

	х	f(x)
	0	4
2	2	6
	4	8
	6	10

х	f(x)
0	6
2	2
4	-2
6	-6

- 5 Which properties best describe the coordinate graph of two distinct parallel lines?
 - 1 same slopes and same intercepts
 - 2 same slopes and different intercepts
 - 3 different slopes and same intercepts
 - 4 different slopes and different intercepts
- 6 A map with different landmarks was drawn.

A line is drawn connecting the ship with the yellow house. What is the equation of the line?

1
$$y = -\frac{9}{2}x + 29$$

$$y = \frac{9}{2}x - 25$$

$$y = -\frac{2}{9}x + \frac{10}{3}$$

4
$$y = \frac{2}{9}x + \frac{2}{3}$$

If the graph of f(x) is a horizontal line, what is the equation of its derivative?

$$\begin{array}{ccc}
1 & f'(x) = x \\
2 & f'(x) = x
\end{array}$$

$$2 f(x) = 0$$

 $3 f(x) = 1$

$$3 f(x) = 1$$

$$1 f'(x) = x
2 f'(x) = 0
3 f'(x) = 1
4 f'(x) = f(x)$$

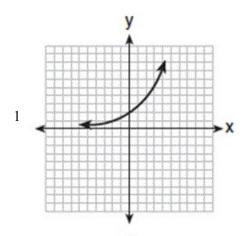
8 Solve the inequality -3|6-x|<-15 for x.

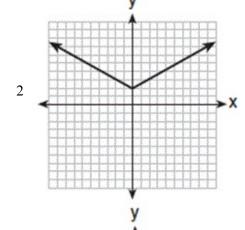
1
$$x < 1$$
 or $x > 11$

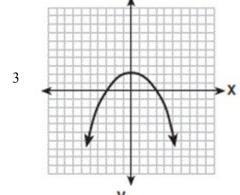
3
$$x \le 1$$
 or $x \ge 11$
4 $1 \le x \le 11$

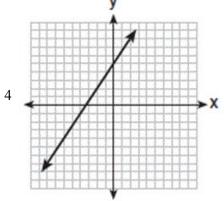
$$4 \ 1 \le x \le 11$$

Which equation represents the line that passes through the point (-3,4) and is parallel to the x-axis?


$$1 \ x = 4$$

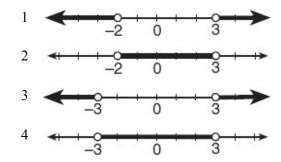

$$\frac{1}{2} x = -3$$


$$\frac{2}{3} v = 4$$

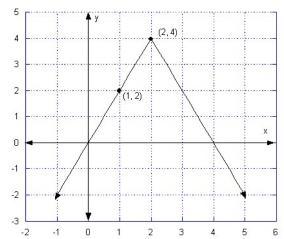

$$1 x = 4
2 x = -3
3 y = 4
4 y = -3$$

10 Which graph represents an absolute value equation?

Which is the equation of a line that passes through the points (-2, 6) and (2, 0)?


$$1 y = 1.5x + 3$$

$$2 y = \frac{3}{2}x - 3$$


$$y = -1.5x + 3$$

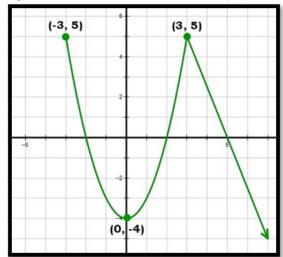
$$4 \ y = -\frac{3}{2}x - 3$$

12 What is the graph of the solution set of |2x - 1| > 5?

13 What is the equation of the function graphed below?

1
$$f(x) = -|x-2|+4$$

2
$$f(x) = 2|-x+2|+4$$


3
$$f(x) = -2|x-2|+4$$

4
$$f(x) = -2|x+2|+4$$

14 The inequality $|1.5C - 24| \le 30$ represents the range of monthly average temperatures, C, in degrees Celsius, for Toledo, Ohio. Solve for C.

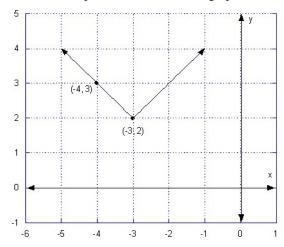
Answer:	$\leq C \leq$	

The graph of f(x) is shown below. Which of the following represents the interval for the domain of f(x)?

- $1 \ (-\infty, \infty)$ $\begin{array}{ccc}
 2 & [-3, \infty) \\
 3 & [5, -\infty)
 \end{array}$ 4 [0, 5]
- 16 Solve for x: 7 3|2x 1| = -20
 - 1 5 and 4
 - 2 -4 and 5
 - 3 4 and 5
 - 4 No Solution
- 17 Which inequality is represented by the accompanying graph?

- $\begin{array}{c|c}
 1 & |x+2| > 5 \\
 2 & |x+3| \ge 2
 \end{array}$
- $|x-1| \le 5$
- $4 |x-5| \ge 2$

18 In which table do all the points lie on the line that has a slope of 2 and a y-intercept of -5?


	x	y
	-2	-10
1	-1	-7
	2	-1
	7	9

	x	y
	-3	-11
3	-1	-6
	2	-1
	7	9

	x	y
	-3	-11
2	-1	-7
	2	-1
	7	9

	x	y
	-3	-11
4	-1	-7
	2	-1
	6	17

What is the equation of the function graphed below?

- f(x) = (x+3)+2
- 2 f(x) = |x-3| + 2
- f(x) = |x+3| 2
- 4 f(x) = |x+3|+2
- Which of the following equations listed below are linear equations?

Equation I: P = 4s

Equation II: $V = s^3$

Equation III: $A = \pi r^2$

- 1 Equation I, only
- 2 Equation II, only
- 3 Equations I and II
- 4 Equation II and III

21 The heights, h, of the students in the chorus at Central Middle School satisfy the inequality $\left| \frac{h - 57.5}{2} \right| \le 3.25$,

when h is measured in inches. Determine the interval in which these heights lie and express your answer to the nearest tenth of a foot.

Answer: from		feet to
-	feet	

22 Which of the following is the first derivative of the function $f(x) = 4x^2 - 6x + 8$?

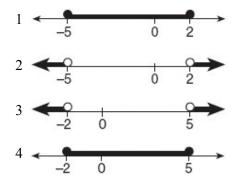
$$1 f'(x) = 8x - 6$$

$$2 f(x) = 4x - 6$$

$$\begin{array}{l}
2 f(x) = 4x - 6 \\
3 f(x) = 8x + h - 6 \\
4 f'(x) = 8x + 2
\end{array}$$

$$4 f'(x) = 8x + 2$$

- 23 The graph of the equation y = -2 is a line
 - 1 parallel to the x-axis
 - 2 parallel to the y-axis
 - 3 passing through the origin
 - 4 passing through the point (-2,0)
- 24 Use the definition of the derivative to find the first derivative of the equation $f(x) = x^2 - 7x + 4$.

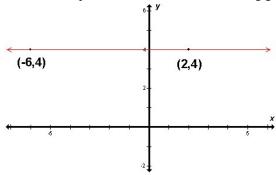

$$1 f'(x) = 2x - 7$$

$$\begin{array}{l}
2 f'(x) = 2xh + h^2 - 7h \\
3 f'(x) = 2x + h - 1 \\
4 f'(x) = 2x - 1
\end{array}$$

$$\frac{2}{3}f'(x) = 2x + h - 1$$

$$4 f'(x) = 2x - 1$$

25 Which graph represents the solution set for the expression |2x+3| > 7?

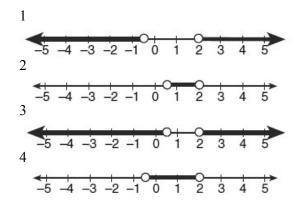


- 26 Describe the horizontal and/or vertical shifts used to transform the equation y = |x| to the equation y = |x| + 4.
 - 1 To the right 4 units
 - 2 Up 4 units
 - 3 Down 4 units
 - 4 To the left 4 units
- 27 Which table represents a function?

1	x	1	2	3	4
1	f(x)	7	7	7	7

2	x	8	8	8	8
_	f(x)	5	6	7	8

What is the equation of the line in the following graph?

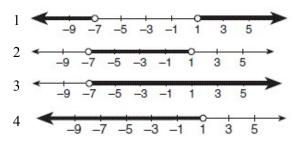

$$1 \ x = 4$$

$$\frac{1}{2} \frac{x}{y} - \frac{1}{4}$$

$$\begin{array}{ccc}
2 & y = 4 \\
3 & y = -4x
\end{array}$$

$$4 \ y = 4x$$

Which graph represents the solution set of $\left| \frac{4x-5}{3} \right| > 1$

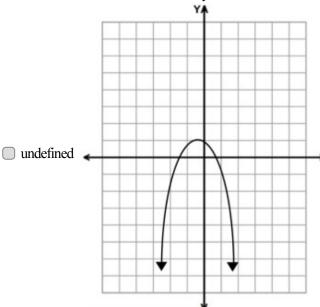


If the function $f(x) = x^3$ has the domain $\{-3, 0, 2, 4\}$, what is its range?

- 31 If |x-1| = 5, then x equals
 - 1 6, only 2 -4, only 3 -4 or 6 4 ±6
- 32 The solution set of -|2x 9| = -11 is
 - 1 {} 2 {10} 3 {1, 10} 4 {-1, 10}
- 33 If $f(n) = (n+2)^2 3n$, which statement is true?

$$1 f(-7) = 4
2 f(-5) = 64
3 f(-3) = 10
4 f(3) = 66$$

Which graph is the solution to the inequality 4|2x+6|-5<27?



35 The set of ordered pairs below represents a relation that is a function.

$$\{(-2, 8), (4, 6), (10, 4)\}$$

Which point, when added to the set, would form a relation that is **not** a function?

1 (0, 6) 2 (4, 2) 3 (-6, 8) 4 (-8, 10) 36 Select all relations that also represent functions. Check the box in front of each relation to make your selection.

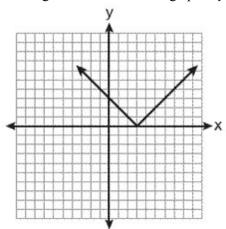
undefined

x	y
1	-5
2	-5
3	-5
4	-5
5	-5

- \square undefined $\{(3,0), (3,1), (3,2), (3,3), (3,4), (3,5)\}$
- \Box undefined $y = 2x^2 + 3x + 1$
- 37 Which function does *not* have the set of all real numbers as its domain?

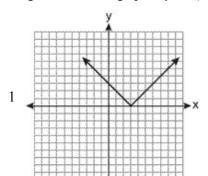
1
$$f(x) = 5^{x} - 3$$

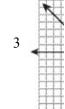
2 $f(x) = \frac{x+1}{x+3}$
3 $f(x) = |2x - 1|$
4 $f(x) = \cos(x) + 1$


38 Using the definition of a derivative to find the first derivative of $f(x) = 5x^2 - 10x - 62$, which equation correctly represents the method used to find the derivative?

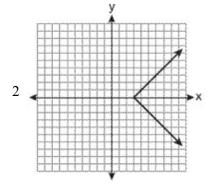
1
$$f'(x) = 10(x-1)$$

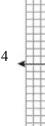
2 $f'(x) = \frac{10x-10}{h}$


3
$$f'(x) = \lim_{h \to 0} \frac{10hx + h^2 + 10h}{h}$$


3
$$f'(x) = \lim_{h \to 0} \frac{10hx + h^2 + 10h}{h}$$

4 $f'(x) = \lim_{h \to 0} \frac{10xh + 10h^2 - 10h}{h}$


The diagram below shows the graph of y = |x - 3|.



Which diagram shows the graph of y = -|x - 3|?

Which of the following is an equivalent form of y - 9 = - $\frac{3}{5}(x+10)$?

$$1 \ 3x + 5y = 15$$

1
$$3x + 5y = 15$$

2 $3x - 5y = -15$
3 $3x + 5y = 39$
4 $3x - 5y = -39$

$$3 3x + 5y = 39$$

$$4 \ 3x - 5y = -39$$

41 Which equation represents a line parallel to the line whose equation is 2x - 3y = 9?

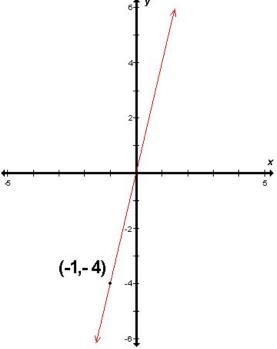
1
$$y = \frac{2}{3}x - 4$$

$$2 y = -\frac{2}{3}x + 4$$
$$3 y = \frac{3}{2}x - 4$$

$$y = \frac{3}{2}x - 4$$

$$4 y = -\frac{3}{2}x + 4$$

Find the first derivative of the function f(x) = (x - 3)(2x - 3)(2x


$$1 f'(x) = 4x + 12$$

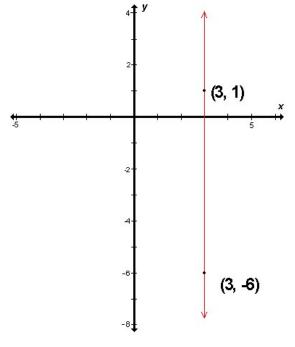
$$2 f'(x) = 4x$$

$$1 f'(x) = 4x + 12
2 f'(x) = 4x
3 f'(x) = 4x2 - 12x
4 f'(x) = 4x - 12$$

$$4 f'(x) = 4x - 12$$

Fill in the missing values for the equation of the line from the following graph.

$$y = mx + b$$
Answer: $y = \begin{bmatrix} x + b \end{bmatrix}$


44 If
$$f(x) = \frac{\sqrt{5x+1}}{1-x}$$
, then $f(7) =$

45 Given
$$f(x) = \frac{3+|2x-9|}{|}$$

Part B: Solve
$$f(x) = 0$$

The correct answer to part B is choice

46 What is the equation of the line in the following graph?

$$1 y = 3
2 y = 3x
3 x = -3
4 x = 3$$

47 Which set lists the numbers that are solutions of |x| = 4?

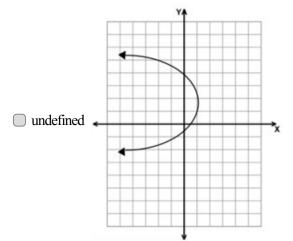
48 A golfer hits a golf ball up in the air from a platform which is 10 feet above the ground. The table models the height, *h*, of the golf ball in feet as it travels a horizontal distance, *d*. Consider the graph of the coordinates below which model the balls path. Which of the following is the domain for the graph?

d	0	50	150	200	250	350	412
h(d)	10	45	85	90	85	45	0

1
$$0 \le d \le 10$$

$$2 \ 0 \le d \le 412$$

3
$$0 \le h \le 10$$


4
$$10 \le h \le 0$$

49 Select all relations that also represent functions. Check the box in front of each relation to make your selection.

L		y
	3	12
undefined	4	-16
_ undermied	5	20
	4	16
	3	-12

undefined
$$\{(-1, -1), (0, -1), (1, 2), (2, 2), (3, 4), (5, 8)\}$$

$$\bigcirc$$
 undefined $y = -2x + 3$

Given
$$f(x) = 2x^2 + 3x - 8$$
. Which expression below is equivalent to the definition of the derivative of this function?

$$1 \quad f'(x) = \lim_{h \to 0} \frac{4xh + 5h}{h}$$

$$2 f'(x) = \lim_{h \to 0} \frac{4xh + 2h^2 + 3h}{h}$$

3
$$f'(x) = \lim_{h \to 0} \frac{4x + 2h + 3}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{4xh + 2h^2 + 3h}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{4x + 2h + 3}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{4x + 2h + 3}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{4xh^2 + 2h^3 + 3h^2}{h}$$